summaryrefslogtreecommitdiff
path: root/lj_matrix.py
blob: bb5506fdb132bd57cd83ea5808e01ec3017490ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import math
import numpy as np
from numpy.linalg import eig


def lj_matrix(mol_data,
              nc_data,
              max_len=25,
              as_eig=False,
              bohr_radius_units=False):
    """
    Creates the coulomb matrix from the molecule data given.
    mol_data: molecule data, matrix of atom coordinates.
    nc_data: nuclear charge data, array of atom data.
    max_len: maximum amount of atoms in molecule.
    as_eig: if data should be returned as matrix or array of eigenvalues.
    bohr_radius_units: if units should be in bohr's radius units.
    """
    if bohr_radius_units:
        conversion_rate = 0.52917721067
    else:
        conversion_rate = 1

    mol_n = len(mol_data)
    mol_nr = range(mol_n)

    if not mol_n == len(nc_data):
        print(''.join(['Error. Molecule matrix dimension is different ',
                       'than the nuclear charge array dimension.']))
    else:
        if max_len < mol_n:
            print(''.join(['Error. Molecule matrix dimension (mol_n) is ',
                           'greater than max_len. Using mol_n.']))
            max_len = None

        if max_len:
            lj = np.zeros((max_len, max_len))
            ml_r = range(max_len)

            # Actual calculation of the coulomb matrix.
            for i in ml_r:
                if i < mol_n:
                    x_i = mol_data[i, 0]
                    y_i = mol_data[i, 1]
                    z_i = mol_data[i, 2]
                    Z_i = nc_data[i]
                else:
                    break

                for j in ml_r:
                    if j < mol_n:
                        x_j = mol_data[j, 0]
                        y_j = mol_data[j, 1]
                        z_j = mol_data[j, 2]

                        x = (x_i-x_j)**2
                        y = (y_i-y_j)**2
                        z = (z_i-z_j)**2

                        if i == j:
                            lj[i, j] = (0.5*Z_i**2.4)
                        else:
                            # Calculations are done after i==j is checked
                            # so no division by zero is done.

                            # A little play with r exponents
                            # so no square root is calculated.
                            # Conversion factor is included in r^2.

                            # 1/r^2
                            r_2 = 1/(conversion_rate**2*(x + y + z))

                            r_6 = math.pow(r_2, 3)
                            r_12 = math.pow(r_6, 2)
                            lj[i, j] = (4*(r_12 - r_6))
                    else:
                        break

            # Now the value will be returned.
            if as_eig:
                lj_sorted = np.sort(eig(lj)[0])[::-1]
                # Thanks to SO for the following lines of code.
                # https://stackoverflow.com/a/43011036

                # Keep zeros at the end.
                mask = lj_sorted != 0.
                f_mask = mask.sum(0, keepdims=1) >\
                    np.arange(lj_sorted.shape[0]-1, -1, -1)

                f_mask = f_mask[::-1]
                lj_sorted[f_mask] = lj_sorted[mask]
                lj_sorted[~f_mask] = 0.

                return lj_sorted

            else:
                return lj

        else:
            lj_temp = []
            # Actual calculation of the coulomb matrix.
            for i in mol_nr:
                x_i = mol_data[i, 0]
                y_i = mol_data[i, 1]
                z_i = mol_data[i, 2]
                Z_i = nc_data[i]

                lj_row = []
                for j in mol_nr:
                    x_j = mol_data[j, 0]
                    y_j = mol_data[j, 1]
                    z_j = mol_data[j, 2]

                    x = (x_i-x_j)**2
                    y = (y_i-y_j)**2
                    z = (z_i-z_j)**2

                    if i == j:
                        lj_row.append(0.5*Z_i**2.4)
                    else:
                        # Calculations are done after i==j is checked
                        # so no division by zero is done.

                        # A little play with r exponents
                        # so no square root is calculated.
                        # Conversion factor is included in r^2.

                        # 1/r^2
                        r_2 = 1/(conversion_rate**2*(x + y + z))

                        r_6 = math.pow(r_2, 3)
                        r_12 = math.pow(r_6, 2)
                        lj_row.append(4*(r_12 - r_6))

                lj_temp.append(np.array(lj_row))

            lj = np.array(lj_temp)
            # Now the value will be returned.
            if as_eig:
                return np.sort(eig(lj)[0])[::-1]
            else:
                return lj