diff options
author | David Luevano <55825613+luevano@users.noreply.github.com> | 2019-12-28 10:37:49 -0700 |
---|---|---|
committer | David Luevano <55825613+luevano@users.noreply.github.com> | 2019-12-28 10:37:49 -0700 |
commit | b4c2dc01ab17248814988c8e141bf16072c45abd (patch) | |
tree | 90136899d7ece8bced35d6d7b805ed09073695d2 | |
parent | b14c581ca5fdab47d7e1c0b688331368cb7f29d0 (diff) |
Add options to do_ml function
-rw-r--r-- | lj_matrix/do_ml.py | 36 |
1 files changed, 31 insertions, 5 deletions
diff --git a/lj_matrix/do_ml.py b/lj_matrix/do_ml.py index ac044cfb3..12323780a 100644 --- a/lj_matrix/do_ml.py +++ b/lj_matrix/do_ml.py @@ -111,13 +111,17 @@ def ml(desc_data, return mae, tictoc -# Test def do_ml(min_training_size, max_training_size=None, training_increment_size=None, ljm_sigma=1.0, ljm_epsilon=1.0, - save_benchmarks=False): + save_benchmarks=False, + max_len=25, + as_eig=True, + bohr_radius_units=False, + sigma=1000.0, + show_msgs=True): """ Main function that does the whole ML process. min_training_size: minimum training size. @@ -126,6 +130,11 @@ def do_ml(min_training_size, ljm_sigma: sigma value for lj matrix. ljm_epsilon: epsilon value for lj matrix. save_benchmarks: if benchmarks should be saved. + max_len: maximum amount of atoms in molecule. + as_eig: if data should be returned as matrix or array of eigenvalues. + bohr_radius_units: if units should be in bohr's radius units. + sigma: depth of the kernel. + show_msgs: Show debug messages or not. """ # Initialization time. init_time = time.perf_counter() @@ -137,7 +146,10 @@ def do_ml(min_training_size, cm_data, ljm_data = parallel_create_matrices(molecules, nuclear_charge, ljm_sigma, - ljm_epsilon) + ljm_epsilon, + max_len, + as_eig, + bohr_radius_units) # ML calculation. procs = [] @@ -148,14 +160,28 @@ def do_ml(min_training_size, training_increment_size): cm_recv, cm_send = Pipe(False) p1 = Process(target=ml, - args=(cm_data, energy_pbe0, i, 'CM', cm_send)) + args=(cm_data, + energy_pbe0, + i, + 'CM', + cm_send, + max_training_size, + sigma, + show_msgs)) procs.append(p1) cm_pipes.append(cm_recv) p1.start() ljm_recv, ljm_send = Pipe(False) p2 = Process(target=ml, - args=(ljm_data, energy_pbe0, i, 'L-JM', ljm_send)) + args=(ljm_data, + energy_pbe0, + i, + 'L-JM', + ljm_send, + max_training_size, + sigma, + show_msgs)) procs.append(p2) ljm_pipes.append(ljm_recv) p2.start() |