diff options
author | David Luevano Alvarado <55825613+luevano@users.noreply.github.com> | 2020-03-09 22:26:49 -0700 |
---|---|---|
committer | David Luevano Alvarado <55825613+luevano@users.noreply.github.com> | 2020-03-09 22:26:49 -0700 |
commit | ae4c379f66c42c1e48564ea1bd85aafe6394abff (patch) | |
tree | 474fcbcca8bd65938d7f2a6db796fcd50bb29b7c | |
parent | 37b3b81c209b616ef640ac1111e55b85e979870c (diff) |
Match CM timings to LJM
-rw-r--r-- | ml_exp/representations.py | 59 |
1 files changed, 22 insertions, 37 deletions
diff --git a/ml_exp/representations.py b/ml_exp/representations.py index 51ed309b9..ab2dcdd21 100644 --- a/ml_exp/representations.py +++ b/ml_exp/representations.py @@ -112,50 +112,35 @@ size. Arrays are not of the right shape.') 'instead of (size).') size = n - lj = np.zeros((size, size), dtype=np.float64) + lj = np.zeros((n, n), dtype=np.float64) # Actual calculation of the lennard-jones matrix. - for i, xyz_i in enumerate(coords): - for j, xyz_j in enumerate(coords): - if i == j: - if diag_value is None: - lj[i, j] = (0.5*nc[i]**2.4) - else: - lj[i, j] = diag_value - else: - # Calculations are done after i==j is checked - # so no division by zero is done. - - # A little play with r exponents - # so no square root is calculated. - # Conversion factor is included in r^2. - rv = xyz_i - xyz_j - r = np.linalg.norm(rv)/cr - - # 1/r^n - r_2 = sigma**2/r**2 - r_6 = r_2**3 - r_12 = r_6**2 - lj[i, j] = (4*epsilon*(r_12 - r_6)) + for i in range(n): + if diag_value is None: + lj[i, i] = 0.5*nc[i]**2.4 + else: + lj[i, i] = diag_value - # Now the value will be returned. - if as_eig: - lj_sorted = np.sort(np.linalg.eig(lj)[0])[::-1] - # Thanks to SO for the following lines of code. - # https://stackoverflow.com/a/43011036 + # Calculates the values row-wise for faster timings. + # Don't calculate the last element (it's only the diagonal element). + for i in range(n - 1): + rv = coords[i + 1:] - coords[i] + r = (sigma*cr)/np.linalg.norm(rv, axis=1) - # Keep zeros at the end. - mask = lj_sorted != 0. - f_mask = mask.sum(0, keepdims=1) >\ - np.arange(lj_sorted.shape[0]-1, -1, -1) + # 1/r^n + r_6 = r**6 + r_12 = r**12 + val = (4*epsilon*(r_12 - r_6)) + lj[i, i + 1:] = val + lj[i + 1:, i] = val - f_mask = f_mask[::-1] - lj_sorted[f_mask] = lj_sorted[mask] - lj_sorted[~f_mask] = 0. + # Now the value will be returned. + if as_eig: + lj_eigs = np.sort(np.linalg.eig(lj)[0])[::-1] - return lj_sorted + return np.pad(lj_eigs, (0, size - n), 'constant') else: - return lj + return np.pad(lj, ((0, size - n), (0, size - n)), 'constant') def get_helping_data(coords, |