"""MIT License Copyright (c) 2019 David Luevano Alvarado Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time import numpy as np from scipy import linalg as LA try: import tensorflow as tf TF_AV = True except ImportError: print('Tensorflow couldn\'t be imported. Maybe it is not installed.') TF_AV = False from ml_exp.misc import printc from ml_exp.kernels import laplauss_kernel from ml_exp.readdb import qm7db def krr(descriptors, labels, training_size=1500, test_size=None, sigma=1000.0, opt=True, identifier=None, laplauss='gauss', use_tf=True, show_msgs=True): """ Basic krr methodology for a single descriptor type. descriptors: array of descriptors. labels: array of labels. training_size: size of the training set to use. test_size: size of the test set to use. If no size is given, the last remaining molecules are used. sigma: depth of the kernel. opt: if the optimized algorithm should be used. For benchmarking purposes. identifier: string with the name of the descriptor used. use_tf: if tensorflow should be used. show_msgs: if debug messages should be shown. NOTE: identifier is just a string and is only for identification purposes. Also, training is done with the first part of the data and testing with the ending part of the data. """ tic = time.perf_counter() # Initial calculations for later use. data_size = descriptors.shape[0] if not identifier: identifier = 'NOT SPECIFIED' if not data_size == labels.shape[0]: raise ValueError('Energies size is different than descriptors size.') if training_size >= data_size: raise ValueError('Training size is greater or equal to the data size.') # If tf is to be used but couldn't be imported, don't try to use it. if use_tf and not TF_AV: use_tf = False # If test_size is not set, it is set to a maximum size of 1500. if not test_size: test_size = data_size - training_size if test_size > 1500: test_size = 1500 if show_msgs: printc(f'{identifier} ML started.', 'GREEN') printc(f'\tTraining size: {training_size}', 'CYAN') printc(f'\tTest size: {test_size}', 'CYAN') printc(f'\tSigma: {test_size}', 'CYAN') if use_tf: if tf.config.experimental.list_physical_devices('GPU'): with tf.device('GPU:0'): X_tr = descriptors[:training_size] Y_tr = labels[:training_size] K_tr = laplauss_kernel(X_tr, X_tr, sigma, laplauss=laplauss, use_tf=use_tf) # Adding a small value on the diagonal for cho_solve. dv = tf.linalg.tensor_diag(tf.constant(1e-8, shape=(training_size), dtype=tf.float64)) K_tr += dv Y_tr = tf.expand_dims(Y_tr, 1) alpha = tf.linalg.cholesky_solve(tf.linalg.cholesky(K_tr), Y_tr) X_te = descriptors[-test_size:] Y_te = labels[-test_size:] K_te = laplauss_kernel(X_te, X_tr, sigma, laplauss=laplauss, use_tf=use_tf) Y_te = tf.expand_dims(Y_te, 1) Y_pr = tf.tensordot(K_te, alpha, 1) mae = tf.reduce_mean(tf.abs(Y_pr - Y_te)) else: raise TypeError('No GPU found, could not create Tensor objects.') else: X_tr = descriptors[:training_size] Y_tr = labels[:training_size] K_tr = laplauss_kernel(X_tr, X_tr, sigma, laplauss=laplauss, use_tf=use_tf) # Adding a small value on the diagonal for cho_solve. K_tr[np.diag_indices_from(K_tr)] += 1e-8 alpha = LA.cho_solve(LA.cho_factor(K_tr), Y_tr) X_te = descriptors[-test_size:] Y_te = labels[-test_size:] K_te = laplauss_kernel(X_te, X_tr, sigma, laplauss=laplauss, use_tf=use_tf) Y_pr = np.dot(K_te, alpha) mae = np.mean(np.abs(Y_pr - Y_te)) if show_msgs: printc(f'\tMAE for {identifier}: {mae:.4f}', 'GREEN') toc = time.perf_counter() tictoc = toc - tic if show_msgs: printc(f'\t{identifier} ML took {tictoc:.4f} seconds.', 'GREEN') printc(f'\t\tTraining size: {training_size}', 'CYAN') printc(f'\t\tTest size: {test_size}', 'CYAN') printc(f'\t\tSigma: {sigma}', 'CYAN') return mae, tictoc def multi_krr(db_path='data', is_shuffled=True, r_seed=111, diag_value=None, lj_sigma=1.0, lj_epsilon=1.0, use_forces=False, stuff='bonds', size=23, as_eig=True, bohr_ru=False, training_size=1500, test_size=None, sigma=1000.0, identifiers=['CM'], use_tf=True, show_msgs=True): """ Main function that does the whole ML process. db_path: path to the database directory. is_shuffled: if the resulting list of compounds should be shuffled. r_seed: random seed to use for the shuffling. diag_value: if special diagonal value is to be used. lj_sigma: sigma value. lj_epsilon: epsilon value. use_forces: if the use of forces instead of k_cx should be used. stuff: elements of the bag, by default the known bag of bonds. size: compound size. as_eig: if the representation should be as the eigenvalues. bohr_ru: if radius units should be in bohr's radius units. training_size: size of the training set to use. test_size: size of the test set to use. If no size is given, the last remaining molecules are used. sigma: depth of the kernel. identifiers: list of names (strings) of descriptors to use. use_tf: if tensorflow should be used. show_msgs: if debug messages should be shown. """ if type(identifiers) != list: raise TypeError('\'identifiers\' is not a list.') # If tf is to be used but couldn't be imported, don't try to use it. if use_tf and not TF_AV: use_tf = False init_time = time.perf_counter() # Data reading. tic = time.perf_counter() compounds, energy_pbe0, energy_delta = qm7db(db_path=db_path, is_shuffled=is_shuffled, r_seed=r_seed, use_tf=use_tf) toc = time.perf_counter() tictoc = toc - tic if show_msgs: printc(f'Data reading took {tictoc:.4f} seconds.', 'CYAN') # Matrices calculation. tic = time.perf_counter() for compound in compounds: if 'CM' in identifiers: compound.gen_cm(size=size, as_eig=as_eig, bohr_ru=bohr_ru) if 'LJM' in identifiers: compound.gen_ljm(diag_value=diag_value, sigma=lj_sigma, epsilon=lj_epsilon, size=size, as_eig=as_eig, bohr_ru=bohr_ru) if 'AM' in identifiers: compound.gen_hd(size=size, bohr_ru=bohr_ru) compound.gen_am(use_forces=use_forces, size=size) if 'BOB' in identifiers: compound.gen_bob(size=size) # Create a numpy array (or tensorflow tensor) for the descriptors. if 'CM' in identifiers: cm_data = np.array([comp.cm for comp in compounds], dtype=np.float64) if 'LJM' in identifiers: ljm_data = np.array([comp.ljm for comp in compounds], dtype=np.float64) if 'AM' in identifiers: am_data = np.array([comp.am for comp in compounds], dtype=np.float64) if 'BOB' in identifiers: bob_data = np.array([comp.bob for comp in compounds], dtype=np.float64) if use_tf: if tf.config.experimental.list_physical_devices('GPU'): with tf.device('GPU:0'): if 'CM' in identifiers: cm_data = tf.convert_to_tensor(cm_data) if 'LJM' in identifiers: ljm_data = tf.convert_to_tensor(ljm_data) if 'AM' in identifiers: am_data = tf.convert_to_tensor(am_data) if 'BOB' in identifiers: bob_data = tf.convert_to_tensor(bob_data) else: raise TypeError('No GPU found, could not create Tensor objects.') toc = time.perf_counter() tictoc = toc - tic if show_msgs: printc(f'Matrices calculation took {tictoc:.4f} seconds.', 'CYAN') # ML calculation. if 'CM' in identifiers: cm_mae, cm_tictoc = simple_ml(cm_data, energy_pbe0, training_size=training_size, test_size=test_size, sigma=sigma, identifier='CM', laplauss='gauss', use_tf=use_tf, show_msgs=show_msgs) if 'LJM' in identifiers: ljm_mae, ljm_tictoc = simple_ml(ljm_data, energy_pbe0, training_size=training_size, test_size=test_size, sigma=sigma, identifier='LJM', laplauss='gauss', use_tf=use_tf, show_msgs=show_msgs) if 'AM' in identifiers: am_mae, am_tictoc = simple_ml(am_data, energy_pbe0, training_size=training_size, test_size=test_size, sigma=sigma, identifier='AM', laplauss='gauss', use_tf=use_tf, show_msgs=show_msgs) if 'BOB' in identifiers: bob_mae, bob_tictoc = simple_ml(bob_data, energy_pbe0, training_size=training_size, test_size=test_size, sigma=sigma, identifier='BOB', laplauss='laplace', use_tf=use_tf, show_msgs=show_msgs) # End of program end_time = time.perf_counter() totaltime = end_time - init_time printc(f'Program took {totaltime:.4f} seconds.', 'CYAN')