"""MIT License Copyright (c) 2019 David Luevano Alvarado Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time from misc import printc import math import numpy as np from numpy.linalg import eig def c_matrix(mol_data, nc_data, max_len=25, as_eig=True, bohr_radius_units=False): """ Creates the Coulomb Matrix from the molecule data given. mol_data: molecule data, matrix of atom coordinates. nc_data: nuclear charge data, array of atom data. max_len: maximum amount of atoms in molecule. as_eig: if data should be returned as matrix or array of eigenvalues. bohr_radius_units: if units should be in bohr's radius units. """ if bohr_radius_units: conversion_rate = 0.52917721067 else: conversion_rate = 1 mol_n = len(mol_data) mol_nr = range(mol_n) if not mol_n == len(nc_data): print(''.join(['Error. Molecule matrix dimension is different ', 'than the nuclear charge array dimension.'])) else: if max_len < mol_n: print(''.join(['Error. Molecule matrix dimension (mol_n) is ', 'greater than max_len. Using mol_n.'])) max_len = None if max_len: cm = np.zeros((max_len, max_len)) ml_r = range(max_len) # Actual calculation of the coulomb matrix. for i in ml_r: if i < mol_n: x_i = mol_data[i, 0] y_i = mol_data[i, 1] z_i = mol_data[i, 2] Z_i = nc_data[i] else: break for j in ml_r: if j < mol_n: x_j = mol_data[j, 0] y_j = mol_data[j, 1] z_j = mol_data[j, 2] Z_j = nc_data[j] x = (x_i-x_j)**2 y = (y_i-y_j)**2 z = (z_i-z_j)**2 if i == j: cm[i, j] = (0.5*Z_i**2.4) else: cm[i, j] = (conversion_rate*Z_i*Z_j/math.sqrt(x + y + z)) else: break # Now the value will be returned. if as_eig: cm_sorted = np.sort(eig(cm)[0])[::-1] # Thanks to SO for the following lines of code. # https://stackoverflow.com/a/43011036 # Keep zeros at the end. mask = cm_sorted != 0. f_mask = mask.sum(0, keepdims=1) >\ np.arange(cm_sorted.shape[0]-1, -1, -1) f_mask = f_mask[::-1] cm_sorted[f_mask] = cm_sorted[mask] cm_sorted[~f_mask] = 0. return cm_sorted else: return cm else: cm_temp = [] # Actual calculation of the coulomb matrix. for i in mol_nr: x_i = mol_data[i, 0] y_i = mol_data[i, 1] z_i = mol_data[i, 2] Z_i = nc_data[i] cm_row = [] for j in mol_nr: x_j = mol_data[j, 0] y_j = mol_data[j, 1] z_j = mol_data[j, 2] Z_j = nc_data[j] x = (x_i-x_j)**2 y = (y_i-y_j)**2 z = (z_i-z_j)**2 if i == j: cm_row.append(0.5*Z_i**2.4) else: cm_row.append(conversion_rate*Z_i*Z_j/math.sqrt(x + y + z)) cm_temp.append(np.array(cm_row)) cm = np.array(cm_temp) # Now the value will be returned. if as_eig: return np.sort(eig(cm)[0])[::-1] else: return cm def c_matrix_multiple(mol_data, nc_data, pipe=None, max_len=25, as_eig=True, bohr_radius_units=False): """ Calculates the Coulomb Matrix of multiple molecules. mol_data: molecule data, matrix of atom coordinates. nc_data: nuclear charge data, array of atom data. pipe: for multiprocessing purposes. Sends the data calculated through a pipe. max_len: maximum amount of atoms in molecule. as_eig: if data should be returned as matrix or array of eigenvalues. bohr_radius_units: if units should be in bohr's radius units. """ printc('Coulomb Matrices calculation started.', 'CYAN') tic = time.perf_counter() cm_data = np.array([c_matrix(mol, nc, max_len, as_eig, bohr_radius_units) for mol, nc in zip(mol_data, nc_data)]) toc = time.perf_counter() printc('\tCM calculation took {:.4f} seconds.'.format(toc - tic), 'GREEN') if pipe: pipe.send(cm_data) return cm_data