From 7c8b391dddd65ff58417df80dfc79cadddf4f4e6 Mon Sep 17 00:00:00 2001 From: David Luevano <55825613+luevano@users.noreply.github.com> Date: Sun, 8 Dec 2019 21:54:19 -0700 Subject: First commit --- lj_matrix.py | 142 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 142 insertions(+) create mode 100644 lj_matrix.py (limited to 'lj_matrix.py') diff --git a/lj_matrix.py b/lj_matrix.py new file mode 100644 index 000000000..bb5506fdb --- /dev/null +++ b/lj_matrix.py @@ -0,0 +1,142 @@ +import math +import numpy as np +from numpy.linalg import eig + + +def lj_matrix(mol_data, + nc_data, + max_len=25, + as_eig=False, + bohr_radius_units=False): + """ + Creates the coulomb matrix from the molecule data given. + mol_data: molecule data, matrix of atom coordinates. + nc_data: nuclear charge data, array of atom data. + max_len: maximum amount of atoms in molecule. + as_eig: if data should be returned as matrix or array of eigenvalues. + bohr_radius_units: if units should be in bohr's radius units. + """ + if bohr_radius_units: + conversion_rate = 0.52917721067 + else: + conversion_rate = 1 + + mol_n = len(mol_data) + mol_nr = range(mol_n) + + if not mol_n == len(nc_data): + print(''.join(['Error. Molecule matrix dimension is different ', + 'than the nuclear charge array dimension.'])) + else: + if max_len < mol_n: + print(''.join(['Error. Molecule matrix dimension (mol_n) is ', + 'greater than max_len. Using mol_n.'])) + max_len = None + + if max_len: + lj = np.zeros((max_len, max_len)) + ml_r = range(max_len) + + # Actual calculation of the coulomb matrix. + for i in ml_r: + if i < mol_n: + x_i = mol_data[i, 0] + y_i = mol_data[i, 1] + z_i = mol_data[i, 2] + Z_i = nc_data[i] + else: + break + + for j in ml_r: + if j < mol_n: + x_j = mol_data[j, 0] + y_j = mol_data[j, 1] + z_j = mol_data[j, 2] + + x = (x_i-x_j)**2 + y = (y_i-y_j)**2 + z = (z_i-z_j)**2 + + if i == j: + lj[i, j] = (0.5*Z_i**2.4) + else: + # Calculations are done after i==j is checked + # so no division by zero is done. + + # A little play with r exponents + # so no square root is calculated. + # Conversion factor is included in r^2. + + # 1/r^2 + r_2 = 1/(conversion_rate**2*(x + y + z)) + + r_6 = math.pow(r_2, 3) + r_12 = math.pow(r_6, 2) + lj[i, j] = (4*(r_12 - r_6)) + else: + break + + # Now the value will be returned. + if as_eig: + lj_sorted = np.sort(eig(lj)[0])[::-1] + # Thanks to SO for the following lines of code. + # https://stackoverflow.com/a/43011036 + + # Keep zeros at the end. + mask = lj_sorted != 0. + f_mask = mask.sum(0, keepdims=1) >\ + np.arange(lj_sorted.shape[0]-1, -1, -1) + + f_mask = f_mask[::-1] + lj_sorted[f_mask] = lj_sorted[mask] + lj_sorted[~f_mask] = 0. + + return lj_sorted + + else: + return lj + + else: + lj_temp = [] + # Actual calculation of the coulomb matrix. + for i in mol_nr: + x_i = mol_data[i, 0] + y_i = mol_data[i, 1] + z_i = mol_data[i, 2] + Z_i = nc_data[i] + + lj_row = [] + for j in mol_nr: + x_j = mol_data[j, 0] + y_j = mol_data[j, 1] + z_j = mol_data[j, 2] + + x = (x_i-x_j)**2 + y = (y_i-y_j)**2 + z = (z_i-z_j)**2 + + if i == j: + lj_row.append(0.5*Z_i**2.4) + else: + # Calculations are done after i==j is checked + # so no division by zero is done. + + # A little play with r exponents + # so no square root is calculated. + # Conversion factor is included in r^2. + + # 1/r^2 + r_2 = 1/(conversion_rate**2*(x + y + z)) + + r_6 = math.pow(r_2, 3) + r_12 = math.pow(r_6, 2) + lj_row.append(4*(r_12 - r_6)) + + lj_temp.append(np.array(lj_row)) + + lj = np.array(lj_temp) + # Now the value will be returned. + if as_eig: + return np.sort(eig(lj)[0])[::-1] + else: + return lj -- cgit v1.2.3-54-g00ecf