From fe11c6d6d18ba9f56db3793f669edebe402ff44c Mon Sep 17 00:00:00 2001
From: David Luevano Alvarado <55825613+luevano@users.noreply.github.com>
Date: Thu, 26 Mar 2020 15:17:25 -0700
Subject: Separate gaussian and laplacian kernels

---
 ml_exp/kernels.py | 88 +++++++++++++++++++++++++++++++++++++++----------------
 1 file changed, 62 insertions(+), 26 deletions(-)

diff --git a/ml_exp/kernels.py b/ml_exp/kernels.py
index 23c72475f..d593d83fd 100644
--- a/ml_exp/kernels.py
+++ b/ml_exp/kernels.py
@@ -20,7 +20,6 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 SOFTWARE.
 """
-# import math
 import numpy as np
 try:
     import tensorflow as tf
@@ -30,17 +29,15 @@ except ImportError:
     TF_AV = False
 
 
-def laplauss_kernel(X1,
+def gaussian_kernel(X1,
                     X2,
                     sigma,
-                    laplauss='gauss',
                     use_tf=True):
     """
-    Calculates the Lpalacian or Gaussian Kernel.
+    Calculates the Gaussian Kernel.
     X1: first representations.
     X2: second representations.
     sigma: kernel width.
-    laplauss: which kernel to calculate.
     use_tf: if tensorflow should be used.
     """
     # If tf is to be used but couldn't be imported, don't try to use it.
@@ -49,12 +46,7 @@ def laplauss_kernel(X1,
 
     X1_size = X1.shape[0]
     X2_size = X2.shape[0]
-    if laplauss == 'gauss':
-        i_sigma = -0.5 / (sigma**2)
-    elif laplauss == 'laplace':
-        i_sigma = -0.5 / sigma
-    else:
-        i_sigma = -0.5 / (sigma**2)
+    i_sigma = -0.5 / (sigma**2)
 
     if use_tf:
         if tf.config.experimental.list_physical_devices('GPU'):
@@ -72,15 +64,8 @@ def laplauss_kernel(X1,
                     else:
                         norm = tf.norm(X2 - X1[i], axis=-1)
 
-                    if laplauss == 'gauss':
-                        return (i + 1,
-                                K.write(i, tf.exp(i_sigma * tf.square(norm))))
-                    elif laplauss == 'laplace':
-                        return (i + 1,
-                                K.write(i, tf.exp(i_sigma * norm)))
-                    else:
-                        return (i + 1,
-                                K.write(i, tf.exp(i_sigma * tf.square(norm))))
+                    return (i + 1,
+                            K.write(i, tf.exp(i_sigma * tf.square(norm))))
 
                 K = tf.TensorArray(dtype=tf.float64,
                                    size=X1_size)
@@ -91,17 +76,68 @@ def laplauss_kernel(X1,
             raise TypeError('No GPU found, could not create Tensor objects.')
     else:
         K = np.zeros((X1_size, X2_size), dtype=np.float64)
-        # Faster way of calculating the kernel (no numba support).
         for i in range(X1_size):
             if X2.ndim == 3:
                 norm = np.linalg.norm(X2 - X1[i], axis=(1, 2))
             else:
                 norm = np.linalg.norm(X2 - X1[i], axis=-1)
-            if laplauss == 'gauss':
-                K[i, :] = np.exp(i_sigma * np.square(norm))
-            elif laplauss == 'laplace':
-                K[i, :] = np.exp(i_sigma * norm)
+            K[i, :] = np.exp(i_sigma * np.square(norm))
+
+    return K
+
+
+def laplacian_kernel(X1,
+                     X2,
+                     sigma,
+                     use_tf=True):
+    """
+    Calculates the Laplacian Kernel.
+    X1: first representations.
+    X2: second representations.
+    sigma: kernel width.
+    use_tf: if tensorflow should be used.
+    """
+    # If tf is to be used but couldn't be imported, don't try to use it.
+    if use_tf and not TF_AV:
+        use_tf = False
+
+    X1_size = X1.shape[0]
+    X2_size = X2.shape[0]
+    i_sigma = -0.5 / sigma
+
+    if use_tf:
+        if tf.config.experimental.list_physical_devices('GPU'):
+            with tf.device('GPU:0'):
+                X1 = tf.convert_to_tensor(X1)
+                X2 = tf.convert_to_tensor(X2)
+                X2r = tf.rank(X2)
+
+                def cond(i, _):
+                    return tf.less(i, X1_size)
+
+                def body(i, K):
+                    if X2r == 3:
+                        norm = tf.norm(X2 - X1[i], axis=(1, 2))
+                    else:
+                        norm = tf.norm(X2 - X1[i], axis=-1)
+
+                    return (i + 1,
+                            K.write(i, tf.exp(i_sigma * norm)))
+
+                K = tf.TensorArray(dtype=tf.float64,
+                                   size=X1_size)
+                i_state = (0, K)
+                n, K = tf.while_loop(cond, body, i_state)
+                K = K.stack()
+        else:
+            raise TypeError('No GPU found, could not create Tensor objects.')
+    else:
+        K = np.zeros((X1_size, X2_size), dtype=np.float64)
+        for i in range(X1_size):
+            if X2.ndim == 3:
+                norm = np.linalg.norm(X2 - X1[i], axis=(1, 2))
             else:
-                K[i, :] = np.exp(i_sigma * np.square(norm))
+                norm = np.linalg.norm(X2 - X1[i], axis=-1)
+            K[i, :] = np.exp(i_sigma * norm)
 
     return K
-- 
cgit v1.2.3-70-g09d2