From f57f38c2886052bef92b3885acc2790ac5bc340d Mon Sep 17 00:00:00 2001
From: David Luevano Alvarado <55825613+luevano@users.noreply.github.com>
Date: Sat, 7 Mar 2020 10:11:53 -0700
Subject: Add laplacian kernel

---
 ml_exp/__init__.py |  3 +++
 ml_exp/do_ml.py    | 61 ++++++++++++++++++++++++++++++++++++++----------------
 ml_exp/kernels.py  | 55 ++++++++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 101 insertions(+), 18 deletions(-)

diff --git a/ml_exp/__init__.py b/ml_exp/__init__.py
index bc5afe03a..e49104e12 100644
--- a/ml_exp/__init__.py
+++ b/ml_exp/__init__.py
@@ -24,6 +24,7 @@ from ml_exp.compound import Compound
 from ml_exp.representations import coulomb_matrix, lennard_jones_matrix,\
         get_helping_data, adjacency_matrix, check_bond, bag_of_bonds
 from ml_exp.qm7db import qm7db
+from ml_exp.kernels import gaussian_kernel, laplacian_kernel
 from ml_exp.do_ml import simple_ml, do_ml
 
 __all__ = ['Compound',
@@ -34,5 +35,7 @@ __all__ = ['Compound',
            'check_bond',
            'bag_of_bonds',
            'qm7db',
+           'gaussian_kernel',
+           'laplacian_kernel',
            'simple_ml',
            'do_ml']
diff --git a/ml_exp/do_ml.py b/ml_exp/do_ml.py
index f4742b66d..b30d73811 100644
--- a/ml_exp/do_ml.py
+++ b/ml_exp/do_ml.py
@@ -30,7 +30,7 @@ except ImportError:
     print('Tensorflow couldn\'t be imported. Maybe it is not installed.')
     TF_AV = False
 from ml_exp.misc import printc
-from ml_exp.kernels import gaussian_kernel
+from ml_exp.kernels import gaussian_kernel, laplacian_kernel
 from ml_exp.qm7db import qm7db
 
 
@@ -93,11 +93,18 @@ def simple_ml(descriptors,
             with tf.device('GPU:0'):
                 X_tr = descriptors[:training_size]
                 Y_tr = energies[:training_size]
-                K_tr = gaussian_kernel(X_tr,
-                                       X_tr,
-                                       sigma,
-                                       use_tf=use_tf)
-
+                if identifier == 'BOB':
+                    K_tr = laplacian_kernel(X_tr,
+                                            X_tr,
+                                            sigma,
+                                            use_tf=use_tf)
+                else:
+                    K_tr = gaussian_kernel(X_tr,
+                                           X_tr,
+                                           sigma,
+                                           use_tf=use_tf)
+
+                # Adding a small value on the diagonal for cho_solve.
                 dv = tf.linalg.tensor_diag(tf.constant(1e-8,
                                                        shape=(training_size),
                                                        dtype=tf.float64))
@@ -108,10 +115,16 @@ def simple_ml(descriptors,
 
                 X_te = descriptors[-test_size:]
                 Y_te = energies[-test_size:]
-                K_te = gaussian_kernel(X_te,
-                                       X_tr,
-                                       sigma,
-                                       use_tf=use_tf)
+                if identifier == 'BOB':
+                    K_te = laplacian_kernel(X_te,
+                                            X_tr,
+                                            sigma,
+                                            use_tf=use_tf)
+                else:
+                    K_te = gaussian_kernel(X_te,
+                                           X_tr,
+                                           sigma,
+                                           use_tf=use_tf)
 
                 Y_te = tf.expand_dims(Y_te, 1)
                 Y_pr = tf.tensordot(K_te, alpha, 1)
@@ -120,10 +133,16 @@ def simple_ml(descriptors,
     else:
         X_tr = descriptors[:training_size]
         Y_tr = energies[:training_size]
-        K_tr = gaussian_kernel(X_tr,
-                               X_tr,
-                               sigma,
-                               use_tf=use_tf)
+        if identifier == 'BOB':
+            K_tr = laplacian_kernel(X_tr,
+                                    X_tr,
+                                    sigma,
+                                    use_tf=use_tf)
+        else:
+            K_tr = gaussian_kernel(X_tr,
+                                   X_tr,
+                                   sigma,
+                                   use_tf=use_tf)
 
         # Adding a small value on the diagonal for cho_solve.
         K_tr[np.diag_indices_from(K_tr)] += 1e-8
@@ -132,10 +151,16 @@ def simple_ml(descriptors,
 
         X_te = descriptors[-test_size:]
         Y_te = energies[-test_size:]
-        K_te = gaussian_kernel(X_te,
-                               X_tr,
-                               sigma,
-                               use_tf=use_tf)
+        if identifier == 'BOB':
+            K_te = laplacian_kernel(X_te,
+                                    X_tr,
+                                    sigma,
+                                    use_tf=use_tf)
+        else:
+            K_te = gaussian_kernel(X_te,
+                                   X_tr,
+                                   sigma,
+                                   use_tf=use_tf)
         Y_pr = np.dot(K_te, alpha)
 
         mae = np.mean(np.abs(Y_pr - Y_te))
diff --git a/ml_exp/kernels.py b/ml_exp/kernels.py
index abc71f7af..488232392 100644
--- a/ml_exp/kernels.py
+++ b/ml_exp/kernels.py
@@ -83,3 +83,58 @@ def gaussian_kernel(X1,
                 norm = np.linalg.norm(X2 - X1[i], axis=-1)
             K[i, :] = np.exp(i_sigma * np.square(norm))
     return K
+
+
+def laplacian_kernel(X1,
+                     X2,
+                     sigma,
+                     use_tf=True):
+    """
+    Calculates the Laplacian Kernel.
+    X1: first representations.
+    X2: second representations.
+    sigma: kernel width.
+    use_tf: if tensorflow should be used.
+    """
+    # If tf is to be used but couldn't be imported, don't try to use it.
+    if use_tf and not TF_AV:
+        use_tf = False
+
+    X1_size = X1.shape[0]
+    X2_size = X2.shape[0]
+    i_sigma = -0.5 / sigma
+
+    if use_tf:
+        if tf.config.experimental.list_physical_devices('GPU'):
+            with tf.device('GPU:0'):
+                X1 = tf.convert_to_tensor(X1)
+                X2 = tf.convert_to_tensor(X2)
+                X2r = tf.rank(X2)
+
+                def cond(i, _):
+                    return tf.less(i, X1_size)
+
+                def body(i, K):
+                    if X2r == 3:
+                        norm = tf.norm(X2 - X1[i], axis=(1, 2))
+                    else:
+                        norm = tf.norm(X2 - X1[i], axis=-1)
+
+                    return (i + 1,
+                            K.write(i, tf.exp(i_sigma * norm)))
+
+                K = tf.TensorArray(dtype=tf.float64,
+                                   size=X1_size)
+                i_state = (0, K)
+                n, K = tf.while_loop(cond, body, i_state)
+                K = K.stack()
+    else:
+        K = np.zeros((X1_size, X2_size), dtype=np.float64)
+        # Faster way of calculating the kernel (no numba support).
+        for i in range(X1_size):
+            if X2.ndim == 3:
+                norm = np.linalg.norm(X2 - X1[i], axis=(1, 2))
+            else:
+                norm = np.linalg.norm(X2 - X1[i], axis=-1)
+            K[i, :] = np.exp(i_sigma * norm)
+    return K
-- 
cgit v1.2.3-70-g09d2