From d48adb6ca31cab1d86d81aa5c88bfeb198f19af8 Mon Sep 17 00:00:00 2001
From: David Luevano Alvarado <55825613+luevano@users.noreply.github.com>
Date: Wed, 11 Mar 2020 10:12:27 -0700
Subject: Change naming to krr

---
 ml_exp/__init__.py |   6 +-
 ml_exp/do_ml.py    | 319 -----------------------------------------------------
 ml_exp/krr.py      | 319 +++++++++++++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 322 insertions(+), 322 deletions(-)
 delete mode 100644 ml_exp/do_ml.py
 create mode 100644 ml_exp/krr.py

diff --git a/ml_exp/__init__.py b/ml_exp/__init__.py
index d304f581c..02819d6a1 100644
--- a/ml_exp/__init__.py
+++ b/ml_exp/__init__.py
@@ -26,7 +26,7 @@ from ml_exp.representations import coulomb_matrix, lennard_jones_matrix,\
 from ml_exp.qm7db import qm7db
 from ml_exp.data import NUCLEAR_CHARGE, POSSIBLE_BONDS
 from ml_exp.kernels import laplauss_kernel
-from ml_exp.do_ml import simple_ml, do_ml
+from ml_exp.krr import krr, multi_krr
 
 __all__ = ['Compound',
            'coulomb_matrix',
@@ -38,7 +38,7 @@ __all__ = ['Compound',
            'bag_of_bonds',
            'qm7db',
            'laplauss_kernel',
-           'simple_ml',
-           'do_ml',
+           'krr',
+           'multi_krr',
            'NUCLEAR_CHARGE',
            'POSSIBLE_BONDS']
diff --git a/ml_exp/do_ml.py b/ml_exp/do_ml.py
deleted file mode 100644
index b37553c24..000000000
--- a/ml_exp/do_ml.py
+++ /dev/null
@@ -1,319 +0,0 @@
-"""MIT License
-
-Copyright (c) 2019 David Luevano Alvarado
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
-"""
-import time
-import numpy as np
-from scipy import linalg as LA
-try:
-    import tensorflow as tf
-    TF_AV = True
-except ImportError:
-    print('Tensorflow couldn\'t be imported. Maybe it is not installed.')
-    TF_AV = False
-from ml_exp.misc import printc
-from ml_exp.kernels import laplauss_kernel
-from ml_exp.qm7db import qm7db
-
-
-def simple_ml(descriptors,
-              energies,
-              training_size=1500,
-              test_size=None,
-              sigma=1000.0,
-              opt=True,
-              identifier=None,
-              laplauss='gauss',
-              use_tf=True,
-              show_msgs=True):
-    """
-    Basic ML methodology for a single descriptor type.
-    descriptors: array of descriptors.
-    energies: array of energies.
-    training_size: size of the training set to use.
-    test_size: size of the test set to use. If no size is given,
-        the last remaining molecules are used.
-    sigma: depth of the kernel.
-    opt: if the optimized algorithm should be used. For benchmarking purposes.
-    identifier: string with the name of the descriptor used.
-    use_tf: if tensorflow should be used.
-    show_msgs: if debug messages should be shown.
-    NOTE: identifier is just a string and is only for identification purposes.
-    Also, training is done with the first part of the data and
-        testing with the ending part of the data.
-    """
-    tic = time.perf_counter()
-    # Initial calculations for later use.
-    data_size = descriptors.shape[0]
-
-    if not identifier:
-        identifier = 'NOT SPECIFIED'
-
-    if not data_size == energies.shape[0]:
-        raise ValueError('Energies size is different than descriptors size.')
-
-    if training_size >= data_size:
-        raise ValueError('Training size is greater or equal to the data size.')
-
-    # If tf is to be used but couldn't be imported, don't try to use it.
-    if use_tf and not TF_AV:
-        use_tf = False
-
-    # If test_size is not set, it is set to a maximum size of 1500.
-    if not test_size:
-        test_size = data_size - training_size
-        if test_size > 1500:
-            test_size = 1500
-
-    if show_msgs:
-        printc(f'{identifier} ML started.', 'GREEN')
-        printc(f'\tTraining size: {training_size}', 'CYAN')
-        printc(f'\tTest size: {test_size}', 'CYAN')
-        printc(f'\tSigma: {test_size}', 'CYAN')
-
-    if use_tf:
-        if tf.config.experimental.list_physical_devices('GPU'):
-            with tf.device('GPU:0'):
-                X_tr = descriptors[:training_size]
-                Y_tr = energies[:training_size]
-                K_tr = laplauss_kernel(X_tr,
-                                       X_tr,
-                                       sigma,
-                                       laplauss=laplauss,
-                                       use_tf=use_tf)
-
-                # Adding a small value on the diagonal for cho_solve.
-                dv = tf.linalg.tensor_diag(tf.constant(1e-8,
-                                                       shape=(training_size),
-                                                       dtype=tf.float64))
-                K_tr += dv
-                Y_tr = tf.expand_dims(Y_tr, 1)
-                alpha = tf.linalg.cholesky_solve(tf.linalg.cholesky(K_tr),
-                                                 Y_tr)
-
-                X_te = descriptors[-test_size:]
-                Y_te = energies[-test_size:]
-                K_te = laplauss_kernel(X_te,
-                                       X_tr,
-                                       sigma,
-                                       laplauss=laplauss,
-                                       use_tf=use_tf)
-
-                Y_te = tf.expand_dims(Y_te, 1)
-                Y_pr = tf.tensordot(K_te, alpha, 1)
-
-                mae = tf.reduce_mean(tf.abs(Y_pr - Y_te))
-        else:
-            raise TypeError('No GPU found, could not create Tensor objects.')
-    else:
-        X_tr = descriptors[:training_size]
-        Y_tr = energies[:training_size]
-        K_tr = laplauss_kernel(X_tr,
-                               X_tr,
-                               sigma,
-                               laplauss=laplauss,
-                               use_tf=use_tf)
-
-        # Adding a small value on the diagonal for cho_solve.
-        K_tr[np.diag_indices_from(K_tr)] += 1e-8
-        alpha = LA.cho_solve(LA.cho_factor(K_tr),
-                             Y_tr)
-
-        X_te = descriptors[-test_size:]
-        Y_te = energies[-test_size:]
-        K_te = laplauss_kernel(X_te,
-                               X_tr,
-                               sigma,
-                               laplauss=laplauss,
-                               use_tf=use_tf)
-        Y_pr = np.dot(K_te, alpha)
-
-        mae = np.mean(np.abs(Y_pr - Y_te))
-
-    if show_msgs:
-        printc(f'\tMAE for {identifier}: {mae:.4f}', 'GREEN')
-
-    toc = time.perf_counter()
-    tictoc = toc - tic
-    if show_msgs:
-        printc(f'\t{identifier} ML took {tictoc:.4f} seconds.', 'GREEN')
-        printc(f'\t\tTraining size: {training_size}', 'CYAN')
-        printc(f'\t\tTest size: {test_size}', 'CYAN')
-        printc(f'\t\tSigma: {sigma}', 'CYAN')
-
-    return mae, tictoc
-
-
-def do_ml(db_path='data',
-          is_shuffled=True,
-          r_seed=111,
-          diag_value=None,
-          lj_sigma=1.0,
-          lj_epsilon=1.0,
-          use_forces=False,
-          stuff='bonds',
-          size=23,
-          as_eig=True,
-          bohr_ru=False,
-          training_size=1500,
-          test_size=None,
-          sigma=1000.0,
-          identifiers=['CM'],
-          use_tf=True,
-          show_msgs=True):
-    """
-    Main function that does the whole ML process.
-    db_path: path to the database directory.
-    is_shuffled: if the resulting list of compounds should be shuffled.
-    r_seed: random seed to use for the shuffling.
-    diag_value: if special diagonal value is to be used.
-    lj_sigma: sigma value.
-    lj_epsilon: epsilon value.
-    use_forces: if the use of forces instead of k_cx should be used.
-    stuff: elements of the bag, by default the known bag of bonds.
-    size: compound size.
-    as_eig: if the representation should be as the eigenvalues.
-    bohr_ru: if radius units should be in bohr's radius units.
-    training_size: size of the training set to use.
-    test_size: size of the test set to use. If no size is given,
-        the last remaining molecules are used.
-    sigma: depth of the kernel.
-    identifiers: list of names (strings) of descriptors to use.
-    use_tf: if tensorflow should be used.
-    show_msgs: if debug messages should be shown.
-    """
-    if type(identifiers) != list:
-        raise TypeError('\'identifiers\' is not a list.')
-
-    # If tf is to be used but couldn't be imported, don't try to use it.
-    if use_tf and not TF_AV:
-        use_tf = False
-
-    init_time = time.perf_counter()
-
-    # Data reading.
-    tic = time.perf_counter()
-    compounds, energy_pbe0, energy_delta = qm7db(db_path=db_path,
-                                                 is_shuffled=is_shuffled,
-                                                 r_seed=r_seed,
-                                                 use_tf=use_tf)
-    toc = time.perf_counter()
-    tictoc = toc - tic
-    if show_msgs:
-        printc(f'Data reading took {tictoc:.4f} seconds.', 'CYAN')
-
-    # Matrices calculation.
-    tic = time.perf_counter()
-    for compound in compounds:
-        if 'CM' in identifiers:
-            compound.gen_cm(size=size,
-                            as_eig=as_eig,
-                            bohr_ru=bohr_ru)
-        if 'LJM' in identifiers:
-            compound.gen_ljm(diag_value=diag_value,
-                             sigma=lj_sigma,
-                             epsilon=lj_epsilon,
-                             size=size,
-                             as_eig=as_eig,
-                             bohr_ru=bohr_ru)
-        if 'AM' in identifiers:
-            compound.gen_hd(size=size,
-                            bohr_ru=bohr_ru)
-            compound.gen_am(use_forces=use_forces,
-                            size=size)
-        if 'BOB' in identifiers:
-            compound.gen_bob(size=size)
-
-    # Create a numpy array (or tensorflow tensor) for the descriptors.
-    if 'CM' in identifiers:
-        cm_data = np.array([comp.cm for comp in compounds], dtype=np.float64)
-    if 'LJM' in identifiers:
-        ljm_data = np.array([comp.ljm for comp in compounds], dtype=np.float64)
-    if 'AM' in identifiers:
-        am_data = np.array([comp.am for comp in compounds], dtype=np.float64)
-    if 'BOB' in identifiers:
-        bob_data = np.array([comp.bob for comp in compounds], dtype=np.float64)
-
-    if use_tf:
-        if tf.config.experimental.list_physical_devices('GPU'):
-            with tf.device('GPU:0'):
-                if 'CM' in identifiers:
-                    cm_data = tf.convert_to_tensor(cm_data)
-                if 'LJM' in identifiers:
-                    ljm_data = tf.convert_to_tensor(ljm_data)
-                if 'AM' in identifiers:
-                    am_data = tf.convert_to_tensor(am_data)
-                if 'BOB' in identifiers:
-                    bob_data = tf.convert_to_tensor(bob_data)
-        else:
-            raise TypeError('No GPU found, could not create Tensor objects.')
-
-    toc = time.perf_counter()
-    tictoc = toc - tic
-    if show_msgs:
-        printc(f'Matrices calculation took {tictoc:.4f} seconds.', 'CYAN')
-
-    # ML calculation.
-    if 'CM' in identifiers:
-        cm_mae, cm_tictoc = simple_ml(cm_data,
-                                      energy_pbe0,
-                                      training_size=training_size,
-                                      test_size=test_size,
-                                      sigma=sigma,
-                                      identifier='CM',
-                                      laplauss='gauss',
-                                      use_tf=use_tf,
-                                      show_msgs=show_msgs)
-    if 'LJM' in identifiers:
-        ljm_mae, ljm_tictoc = simple_ml(ljm_data,
-                                        energy_pbe0,
-                                        training_size=training_size,
-                                        test_size=test_size,
-                                        sigma=sigma,
-                                        identifier='LJM',
-                                        laplauss='gauss',
-                                        use_tf=use_tf,
-                                        show_msgs=show_msgs)
-    if 'AM' in identifiers:
-        am_mae, am_tictoc = simple_ml(am_data,
-                                      energy_pbe0,
-                                      training_size=training_size,
-                                      test_size=test_size,
-                                      sigma=sigma,
-                                      identifier='AM',
-                                      laplauss='gauss',
-                                      use_tf=use_tf,
-                                      show_msgs=show_msgs)
-    if 'BOB' in identifiers:
-        bob_mae, bob_tictoc = simple_ml(bob_data,
-                                        energy_pbe0,
-                                        training_size=training_size,
-                                        test_size=test_size,
-                                        sigma=sigma,
-                                        identifier='BOB',
-                                        laplauss='laplace',
-                                        use_tf=use_tf,
-                                        show_msgs=show_msgs)
-
-    # End of program
-    end_time = time.perf_counter()
-    totaltime = end_time - init_time
-    printc(f'Program took {totaltime:.4f} seconds.', 'CYAN')
diff --git a/ml_exp/krr.py b/ml_exp/krr.py
new file mode 100644
index 000000000..dca1e14e6
--- /dev/null
+++ b/ml_exp/krr.py
@@ -0,0 +1,319 @@
+"""MIT License
+
+Copyright (c) 2019 David Luevano Alvarado
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+"""
+import time
+import numpy as np
+from scipy import linalg as LA
+try:
+    import tensorflow as tf
+    TF_AV = True
+except ImportError:
+    print('Tensorflow couldn\'t be imported. Maybe it is not installed.')
+    TF_AV = False
+from ml_exp.misc import printc
+from ml_exp.kernels import laplauss_kernel
+from ml_exp.qm7db import qm7db
+
+
+def krr(descriptors,
+        energies,
+        training_size=1500,
+        test_size=None,
+        sigma=1000.0,
+        opt=True,
+        identifier=None,
+        laplauss='gauss',
+        use_tf=True,
+              show_msgs=True):
+    """
+    Basic krr methodology for a single descriptor type.
+    descriptors: array of descriptors.
+    energies: array of energies.
+    training_size: size of the training set to use.
+    test_size: size of the test set to use. If no size is given,
+        the last remaining molecules are used.
+    sigma: depth of the kernel.
+    opt: if the optimized algorithm should be used. For benchmarking purposes.
+    identifier: string with the name of the descriptor used.
+    use_tf: if tensorflow should be used.
+    show_msgs: if debug messages should be shown.
+    NOTE: identifier is just a string and is only for identification purposes.
+    Also, training is done with the first part of the data and
+        testing with the ending part of the data.
+    """
+    tic = time.perf_counter()
+    # Initial calculations for later use.
+    data_size = descriptors.shape[0]
+
+    if not identifier:
+        identifier = 'NOT SPECIFIED'
+
+    if not data_size == energies.shape[0]:
+        raise ValueError('Energies size is different than descriptors size.')
+
+    if training_size >= data_size:
+        raise ValueError('Training size is greater or equal to the data size.')
+
+    # If tf is to be used but couldn't be imported, don't try to use it.
+    if use_tf and not TF_AV:
+        use_tf = False
+
+    # If test_size is not set, it is set to a maximum size of 1500.
+    if not test_size:
+        test_size = data_size - training_size
+        if test_size > 1500:
+            test_size = 1500
+
+    if show_msgs:
+        printc(f'{identifier} ML started.', 'GREEN')
+        printc(f'\tTraining size: {training_size}', 'CYAN')
+        printc(f'\tTest size: {test_size}', 'CYAN')
+        printc(f'\tSigma: {test_size}', 'CYAN')
+
+    if use_tf:
+        if tf.config.experimental.list_physical_devices('GPU'):
+            with tf.device('GPU:0'):
+                X_tr = descriptors[:training_size]
+                Y_tr = energies[:training_size]
+                K_tr = laplauss_kernel(X_tr,
+                                       X_tr,
+                                       sigma,
+                                       laplauss=laplauss,
+                                       use_tf=use_tf)
+
+                # Adding a small value on the diagonal for cho_solve.
+                dv = tf.linalg.tensor_diag(tf.constant(1e-8,
+                                                       shape=(training_size),
+                                                       dtype=tf.float64))
+                K_tr += dv
+                Y_tr = tf.expand_dims(Y_tr, 1)
+                alpha = tf.linalg.cholesky_solve(tf.linalg.cholesky(K_tr),
+                                                 Y_tr)
+
+                X_te = descriptors[-test_size:]
+                Y_te = energies[-test_size:]
+                K_te = laplauss_kernel(X_te,
+                                       X_tr,
+                                       sigma,
+                                       laplauss=laplauss,
+                                       use_tf=use_tf)
+
+                Y_te = tf.expand_dims(Y_te, 1)
+                Y_pr = tf.tensordot(K_te, alpha, 1)
+
+                mae = tf.reduce_mean(tf.abs(Y_pr - Y_te))
+        else:
+            raise TypeError('No GPU found, could not create Tensor objects.')
+    else:
+        X_tr = descriptors[:training_size]
+        Y_tr = energies[:training_size]
+        K_tr = laplauss_kernel(X_tr,
+                               X_tr,
+                               sigma,
+                               laplauss=laplauss,
+                               use_tf=use_tf)
+
+        # Adding a small value on the diagonal for cho_solve.
+        K_tr[np.diag_indices_from(K_tr)] += 1e-8
+        alpha = LA.cho_solve(LA.cho_factor(K_tr),
+                             Y_tr)
+
+        X_te = descriptors[-test_size:]
+        Y_te = energies[-test_size:]
+        K_te = laplauss_kernel(X_te,
+                               X_tr,
+                               sigma,
+                               laplauss=laplauss,
+                               use_tf=use_tf)
+        Y_pr = np.dot(K_te, alpha)
+
+        mae = np.mean(np.abs(Y_pr - Y_te))
+
+    if show_msgs:
+        printc(f'\tMAE for {identifier}: {mae:.4f}', 'GREEN')
+
+    toc = time.perf_counter()
+    tictoc = toc - tic
+    if show_msgs:
+        printc(f'\t{identifier} ML took {tictoc:.4f} seconds.', 'GREEN')
+        printc(f'\t\tTraining size: {training_size}', 'CYAN')
+        printc(f'\t\tTest size: {test_size}', 'CYAN')
+        printc(f'\t\tSigma: {sigma}', 'CYAN')
+
+    return mae, tictoc
+
+
+def multi_krr(db_path='data',
+              is_shuffled=True,
+              r_seed=111,
+              diag_value=None,
+              lj_sigma=1.0,
+              lj_epsilon=1.0,
+              use_forces=False,
+              stuff='bonds',
+              size=23,
+              as_eig=True,
+              bohr_ru=False,
+              training_size=1500,
+              test_size=None,
+              sigma=1000.0,
+              identifiers=['CM'],
+              use_tf=True,
+              show_msgs=True):
+    """
+    Main function that does the whole ML process.
+    db_path: path to the database directory.
+    is_shuffled: if the resulting list of compounds should be shuffled.
+    r_seed: random seed to use for the shuffling.
+    diag_value: if special diagonal value is to be used.
+    lj_sigma: sigma value.
+    lj_epsilon: epsilon value.
+    use_forces: if the use of forces instead of k_cx should be used.
+    stuff: elements of the bag, by default the known bag of bonds.
+    size: compound size.
+    as_eig: if the representation should be as the eigenvalues.
+    bohr_ru: if radius units should be in bohr's radius units.
+    training_size: size of the training set to use.
+    test_size: size of the test set to use. If no size is given,
+        the last remaining molecules are used.
+    sigma: depth of the kernel.
+    identifiers: list of names (strings) of descriptors to use.
+    use_tf: if tensorflow should be used.
+    show_msgs: if debug messages should be shown.
+    """
+    if type(identifiers) != list:
+        raise TypeError('\'identifiers\' is not a list.')
+
+    # If tf is to be used but couldn't be imported, don't try to use it.
+    if use_tf and not TF_AV:
+        use_tf = False
+
+    init_time = time.perf_counter()
+
+    # Data reading.
+    tic = time.perf_counter()
+    compounds, energy_pbe0, energy_delta = qm7db(db_path=db_path,
+                                                 is_shuffled=is_shuffled,
+                                                 r_seed=r_seed,
+                                                 use_tf=use_tf)
+    toc = time.perf_counter()
+    tictoc = toc - tic
+    if show_msgs:
+        printc(f'Data reading took {tictoc:.4f} seconds.', 'CYAN')
+
+    # Matrices calculation.
+    tic = time.perf_counter()
+    for compound in compounds:
+        if 'CM' in identifiers:
+            compound.gen_cm(size=size,
+                            as_eig=as_eig,
+                            bohr_ru=bohr_ru)
+        if 'LJM' in identifiers:
+            compound.gen_ljm(diag_value=diag_value,
+                             sigma=lj_sigma,
+                             epsilon=lj_epsilon,
+                             size=size,
+                             as_eig=as_eig,
+                             bohr_ru=bohr_ru)
+        if 'AM' in identifiers:
+            compound.gen_hd(size=size,
+                            bohr_ru=bohr_ru)
+            compound.gen_am(use_forces=use_forces,
+                            size=size)
+        if 'BOB' in identifiers:
+            compound.gen_bob(size=size)
+
+    # Create a numpy array (or tensorflow tensor) for the descriptors.
+    if 'CM' in identifiers:
+        cm_data = np.array([comp.cm for comp in compounds], dtype=np.float64)
+    if 'LJM' in identifiers:
+        ljm_data = np.array([comp.ljm for comp in compounds], dtype=np.float64)
+    if 'AM' in identifiers:
+        am_data = np.array([comp.am for comp in compounds], dtype=np.float64)
+    if 'BOB' in identifiers:
+        bob_data = np.array([comp.bob for comp in compounds], dtype=np.float64)
+
+    if use_tf:
+        if tf.config.experimental.list_physical_devices('GPU'):
+            with tf.device('GPU:0'):
+                if 'CM' in identifiers:
+                    cm_data = tf.convert_to_tensor(cm_data)
+                if 'LJM' in identifiers:
+                    ljm_data = tf.convert_to_tensor(ljm_data)
+                if 'AM' in identifiers:
+                    am_data = tf.convert_to_tensor(am_data)
+                if 'BOB' in identifiers:
+                    bob_data = tf.convert_to_tensor(bob_data)
+        else:
+            raise TypeError('No GPU found, could not create Tensor objects.')
+
+    toc = time.perf_counter()
+    tictoc = toc - tic
+    if show_msgs:
+        printc(f'Matrices calculation took {tictoc:.4f} seconds.', 'CYAN')
+
+    # ML calculation.
+    if 'CM' in identifiers:
+        cm_mae, cm_tictoc = simple_ml(cm_data,
+                                      energy_pbe0,
+                                      training_size=training_size,
+                                      test_size=test_size,
+                                      sigma=sigma,
+                                      identifier='CM',
+                                      laplauss='gauss',
+                                      use_tf=use_tf,
+                                      show_msgs=show_msgs)
+    if 'LJM' in identifiers:
+        ljm_mae, ljm_tictoc = simple_ml(ljm_data,
+                                        energy_pbe0,
+                                        training_size=training_size,
+                                        test_size=test_size,
+                                        sigma=sigma,
+                                        identifier='LJM',
+                                        laplauss='gauss',
+                                        use_tf=use_tf,
+                                        show_msgs=show_msgs)
+    if 'AM' in identifiers:
+        am_mae, am_tictoc = simple_ml(am_data,
+                                      energy_pbe0,
+                                      training_size=training_size,
+                                      test_size=test_size,
+                                      sigma=sigma,
+                                      identifier='AM',
+                                      laplauss='gauss',
+                                      use_tf=use_tf,
+                                      show_msgs=show_msgs)
+    if 'BOB' in identifiers:
+        bob_mae, bob_tictoc = simple_ml(bob_data,
+                                        energy_pbe0,
+                                        training_size=training_size,
+                                        test_size=test_size,
+                                        sigma=sigma,
+                                        identifier='BOB',
+                                        laplauss='laplace',
+                                        use_tf=use_tf,
+                                        show_msgs=show_msgs)
+
+    # End of program
+    end_time = time.perf_counter()
+    totaltime = end_time - init_time
+    printc(f'Program took {totaltime:.4f} seconds.', 'CYAN')
-- 
cgit v1.2.3-70-g09d2